Variational Integrators and Fluid‐Structure‐Interaction at Low Reynolds‐Number

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variational Integrators

V sequence fxkg. Similar result is also true for quasiNewton methods with trust region (see [16]). Another type of special quasi-Newton methods is that the quasi-Newton matrices are sparse. It is quite often that large-scale problems have separable structure, which leads to special structure of the Hessian matrices. In such cases we can require the quasiNewton matrices to have similar structures.

متن کامل

Spectral variational integrators

In this paper, we present a new variational integrator for problems in Lagrangian mechanics. Using techniques from Galerkin variational integrators, we construct a scheme for numerical integration that converges geometrically, and is symplectic and momentum preserving. Furthermore, we prove that under appropriate assumptions, variational integrators constructed using Galerkin techniques will yi...

متن کامل

Spectral-collocation variational integrators

Spectral methods are a popular choice for constructing numerical approximations for smooth problems, as they can achieve geometric rates of convergence and have a relatively small memory footprint. In this paper, we introduce a general framework to convert a spectral-collocation method into a shootingbased variational integrator for Hamiltonian systems. We also compare the proposed spectral-col...

متن کامل

Discrete Hamiltonian variational integrators

We derive a variational characterization of the exact discrete Hamiltonian, which is a Type II generating function for the exact flow of a Hamiltonian system, by considering a Legendre transformation of Jacobi’s solution of the Hamilton–Jacobi equation. This provides an exact correspondence between continuous and discrete Hamiltonian mechanics, which arise from the continuousand discrete-time H...

متن کامل

Adaptive Variational Integrators

It is now well known that symplectic integrators lose many of their desirable properties when variable step sizes are used. The most common approach to combine adaptive step sizes and symplectic integrators involves the Poincaré transformation of the original Hamiltonian. In this article, we provide a framework for the construction of variational integrators using the Poincaré transformation. S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: PAMM

سال: 2019

ISSN: 1617-7061,1617-7061

DOI: 10.1002/pamm.201900365